Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Biology (Basel) ; 12(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508415

RESUMO

This study aimed to compare microscopic counting, culture, and quantitative or real-time PCR (qPCR) to quantify sulfate-reducing bacteria in environmental and engineered sludge samples. Four sets of primers that amplified the dsrA and apsA gene encoding the two key enzymes of the sulfate-reduction pathway were initially tested. qPCR standard curves were constructed using genomic DNA from an SRB suspension and dilutions of an enriched sulfate-reducing sludge. According to specificity and reproducibility, the DSR1F/RH3-dsr-R primer set ensured a good quantification based on dsrA gene amplification; however, it exhibited inconsistencies at low and high levels of SRB concentrations in environmental and sulfate-reducing sludge samples. Ultimately, we conducted a qPCR method normalized to dsrA gene copies, using a synthetic double-stranded DNA fragment as a calibrator. This method fulfilled all validation criteria and proved to be specific, accurate, and precise. The enumeration of metabolically active SRB populations through culture methods differed from dsrA gene copies but showed a plausible positive correlation. Conversely, microscopic counting had limitations due to distinguishing densely clustered organisms, impacting precision. Hence, this study proves that a qPCR-based method optimized with dsrA gene copies as a calibrator is a sensitive molecular tool for the absolute enumeration of SRB populations in engineered and environmental sludge samples.

2.
Chemosphere ; 335: 139121, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37271465

RESUMO

3-Nitro-1,2,4-triazol-5-one (NTO) is an ingredient of new safer-to-handle military insensitive munitions formulations. NTO can be microbially reduced to 3-amino-1,2,4-triazol-5-one (ATO) under anaerobic conditions if an electron donor is available. Conversely, ATO can undergo aerobic biodegradation. Previously, our research group developed an anaerobic enrichment culture that reduces NTO to ATO. A second culture could aerobically mineralize ATO. This study aimed to combine anaerobic/aerobic conditions within a down-flow perlite/soil column for simultaneous NTO reduction and ATO oxidation. Acetate biostimulation was investigated to promote oxygen depletion and create anaerobic micro-niches for NTO reduction, whereas perlite increased soil porosity and oxygen convection, allowing ATO oxidation. Two columns packed with a perlite/soil mixture (70:30, wet wt.%) or 100% perlite were operated aerobically and inoculated with the NTO- and ATO-degrading cultures. Initially, the influent consisted of ∼280 µM ATO, and after 30 days, the feeding was switched to ∼260 µM NTO and ∼250 µM acetate. By progressively increasing acetate from 250 to 4000 µM, the NTO removal gradually improved in both columns. The perlite/soil column reached a 100% NTO removal after 4000 µM acetate was supplemented. Additionally, there was no ATO accumulation, and inorganic nitrogen was produced, indicating ATO mineralization. Although NH4+ was produced following ATO oxidation, most nitrogen was recovered as NO3- likely via nitrification reactions. Microbial community analysis revealed that phylotypes hosted in the enrichment cultures specialized in NTO reduction (e.g., Geobacter) and ATO oxidation (e.g., Hydrogenophaga, Ramlibacter, Terrimonas, and Pseudomonas) were established in the columns. Besides, the predominant genera (Azohydromonas, Zoogloea, and Azospirillum) are linked to nitrogen cycling by performing nitrogen fixation, NO3- reduction, and nitroaromatics degradation. This study applied a bulking agent (perlite) and acetate biostimulation to achieve simultaneous NTO reduction and ATO oxidation in a single column. Such a strategy can assist with real-world applications of NTO and ATO biodegradation mechanisms.


Assuntos
Nitrocompostos , Solo , Biodegradação Ambiental , Nitrocompostos/metabolismo , Nitrogênio/metabolismo
3.
Front Neurosci ; 17: 1126004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144090

RESUMO

Recent changes in cannabis accessibility have provided adjunct therapies for patients across numerous disease states and highlights the urgency in understanding how cannabinoids and the endocannabinoid (EC) system interact with other physiological structures. The EC system plays a critical and modulatory role in respiratory homeostasis and pulmonary functionality. Respiratory control begins in the brainstem without peripheral input, and coordinates the preBötzinger complex, a component of the ventral respiratory group that interacts with the dorsal respiratory group to synchronize burstlet activity and drive inspiration. An additional rhythm generator: the retrotrapezoid nucleus/parafacial respiratory group drives active expiration during conditions of exercise or high CO2. Combined with the feedback information from the periphery: through chemo- and baroreceptors including the carotid bodies, the cranial nerves, stretch of the diaphragm and intercostal muscles, lung tissue, and immune cells, and the cranial nerves, our respiratory system can fine tune motor outputs that ensure we have the oxygen necessary to survive and can expel the CO2 waste we produce, and every aspect of this process can be influenced by the EC system. The expansion in cannabis access and potential therapeutic benefits, it is essential that investigations continue to uncover the underpinnings and mechanistic workings of the EC system. It is imperative to understand the impact cannabis, and exogenous cannabinoids have on these physiological systems, and how some of these compounds can mitigate respiratory depression when combined with opioids or other medicinal therapies. This review highlights the respiratory system from the perspective of central versus peripheral respiratory functionality and how these behaviors can be influenced by the EC system. This review will summarize the literature available on organic and synthetic cannabinoids in breathing and how that has shaped our understanding of the role of the EC system in respiratory homeostasis. Finally, we look at some potential future therapeutic applications the EC system has to offer for the treatment of respiratory diseases and a possible role in expanding the safety profile of opioid therapies while preventing future opioid overdose fatalities that result from respiratory arrest or persistent apnea.

4.
Environ Sci Pollut Res Int ; 30(23): 64606-64616, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37071366

RESUMO

The need for effective technologies to remediate the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) is emerging due to the increasing use by the US Army and environmental concerns about the toxicity and aqueous mobility of NTO. Reductive treatment is essential for the complete degradation of NTO to environmentally safe products. The objective of this study is to investigate the feasibility of applying zero-valent iron (ZVI) in a continuous-flow packed bed reactor as an effective NTO remediation technology. The ZVI-packed columns treated an acidic influent (pH 3.0) or a circumneutral influent (pH 6.0) for 6 months (ca. 11,000 pore volumes, PVs). Both columns effectively reduced NTO to the amine product, 3-amino-1,2,4-triazol-5-one (ATO). The column treating the pH-3.0 influent exhibited prolonged longevity in reducing NTO, treating 11-fold more PVs than the column treating pH-6.0 influent until the breakthrough point (defined as when 85% of NTO was removed). The exhausted columns (defined as when only 10% of NTO was removed) regained the NTO reducing capacity by reactivation using 1 M HCl, fully removing NTO. After the experiment, solid-phase analysis of the packed-bed material showed that ZVI was oxidized to iron (oxyhydr)oxide minerals such as magnetite, lepidocrocite, and goethite during NTO treatment. This is the first report on the reduction of NTO and the concomitant oxidation of ZVI in continuous-flow column experiments. The evidence indicates that treatment in a ZVI-packed bed reactor is an effective approach for the removal of NTO.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Triazóis/análise , Nitrocompostos/química , Óxidos , Poluentes Químicos da Água/análise
5.
Pediatr Pulmonol ; 58(7): 1896-1903, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37067397

RESUMO

OBJECTIVE: The purpose of this study was to describe the feasibility of respiratory oscillometry (RO) in schoolchildren with asthma, and the concordance of its results with those of spirometry, to determine its clinical usefulness. METHODS: RO and spirometry were performed in 154 children (6 to 14-year-old) with asthma, following strict quality criteria for the tests. Their feasibility (probability of valid test, time of execution, number of maneuvers needed to achieve a valid test, and perceived difficulty) was compared. The factors that influence feasibility were analyzed with multivariate methods. FEV1, FEV1/FVC, FVC and FEF25-75 for spirometry, and R5, AX and R5-19 for RO, were converted into z-scores and their concordance was investigated through intraclass correlation coefficients (ICC) and kappa indices for normal/abnormal values. RESULTS: There were no differences in the probability of obtaining a valid RO or spirometry (83.1% vs. 81.8%, p = 0.868). RO required a lower number of maneuvers [mean (SD) 4.2 (1.8) versus 6.0 (1.6), p < 0.001] and less execution time [5.1 (2.7) versus 7.6 (2.4) minutes, p < 0.001], and patients considered it less difficult. Age increased the probability of obtaining valid RO and spirometry. The concordance of results between RO and spirometry was low, and only between zFEV1 and zAX could it be considered moderate (ICC = 0.412, kappa = 0.427). CONCLUSION: RO and spirometry are feasible in children with asthma. RO has some practical advantages, but the concordance of its results with spirometry is low.


Assuntos
Asma , Criança , Humanos , Adolescente , Oscilometria/métodos , Estudos de Viabilidade , Asma/diagnóstico , Espirometria/métodos , Volume Expiratório Forçado
6.
Artigo em Inglês | MEDLINE | ID: mdl-36751723

RESUMO

Antimony (Sb) is a toxic and carcinogenic metalloid that can be present in contaminated water generated by mining operations and other industrial activities. The toxicity of Sb (III) and Sb (V) to aerobic microorganisms remains limited and unexplored for anaerobic microorganisms involved in hydrogen (H2) and methane (CH4) production. This study aimed to evaluate the toxicity of Sb (III) and Sb (V) upon aerobic and anaerobic microorganisms important in biological wastewater treatment systems. Sb (III) was more toxic than Sb (V) independently of the test and environment evaluated. Under aerobic conditions maintained in the Microtox assay, Sb (V) was not toxic to Allivibrio fischeri at concentrations as high as 500 mg/L, whereas Sb (III) caused just over 50% inhibition at concentration of 250 mg/L after 5 min of exposure. In the respirometry test, for the specific oxygen uptake rate, the concentrations of Sb (III) and Sb (V) displaying 50% inhibition were 0.09 and 56.2 mg/L, respectively. Under anaerobic conditions, exposure to Sb (III) and Sb (V) led to a decrease in microorganisms activity of fermentative and methanogenic processes. The results confirm that the microbial toxicity of Sb depends on its speciation and Sb (III) displays a significantly higher inhibitory potential than Sb (V) in both aerobic and anaerobic environments.


Assuntos
Antimônio , Antimônio/toxicidade , Anaerobiose
7.
Environ Technol ; 44(2): 185-196, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34380378

RESUMO

Sulphate reducing bacteria (SRB) offer promise for the treatment of mine waste due to their effectiveness removing toxic heavy metals as highly insoluble metal sulphides and their ability to generate alkalinity. The main objective of this study was to develop a treatment composed of a sulphate-reducing bioreactor with a limestone precolumn for the removal of Cu(II) from a synthetic ARD. The purpose of the limestone column was to increase the pH values and decrease the level of Cu in the effluent to prevent SRB inhibition. The system was fed with a pH-2.7 synthetic ARD containing Cu(II) (10-40 mg/L), sulphate (2000 mg/L) and acetate (2.5 g COD/L) for 150 days. Copper removal efficiencies in the two-stage system were very high (95-99%), with a final concentration of 0.53 mg/L Cu, and almost complete removal occurred in the limestone precolumn. In the same manner, the acidity of the synthetic ARD was effectively reduced in the limestone precolumn to 7.3 and the pH was raised in the bioreactor (7.3-8.0). COD consumption by methanogens was predominant from day 0-118, but SRB dominated at the end of the experiment (day 150) when the average COD removal and sulphide production were 74.8% and 61.7%, respectively. Study of the microbial taxonomic composition in the bioreactor revealed that Methanosarcina and Methanosaeta were the most prevalent methanogens while the genera Desulfotomaculum and Syntrophobacter were the dominant SRB. Among the SRB identified Desulfotomaculum intricatum (99% identity) and Desulfotomaculum acetoxidans (96%) were the most abundant sequences of bacteria capable of using acetate.


Assuntos
Metais Pesados , Metais Pesados/química , Sulfatos/química , Carbonato de Cálcio , Reatores Biológicos , Acetatos
8.
Water Res ; 229: 119496, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535085

RESUMO

Nitroguanidine (NQ) is a constituent of gas generators for automobile airbags, smokeless pyrotechnics, insecticides, propellants, and new insensitive munitions formulations applied by the military. During its manufacture and use, NQ can easily spread in soils, ground, and surface waters due to its high aqueous solubility. Very little is known about the microbial biotransformation of NQ. This study aimed to elucidate important mechanisms operating during NQ anaerobic biotransformation. To achieve this goal, we developed an anaerobic enrichment culture able to reduce NQ to nitrosoguanidine (NsoQ), which was further abiotically transformed to cyanamide. Effective electron donors for NQ biotransformation were lactate and, to a lesser extent, pyruvate. The results demonstrate that the enrichment process selected a sulfate-reducing culture that utilized lactate as its electron donor and sulfate as its electron acceptor while competing with NQ as an electron sink. A unique property of the culture was its requirement for exogenous nitrogen (e.g., from yeast extract or NH4Cl) for NQ biotransformation since NQ itself did not serve as a nitrogen source. The main phylogenetic groups associated with the NQ-reducing culture were sulfate-reducing and fermentative bacteria, namely Cupidesulfovibrio oxamicus (63.1% relative abundance), Dendrosporobacter spp. (12.0%), and Raoultibacter massiliens (10.9%). The molecular ecology results corresponded to measurable physiological properties of the most abundant members. The results establish the conditions for NQ anaerobic biotransformation and the microbial community associated with the process, improving our present comprehension of NQ environmental fate and assisting the development of NQ remediation strategies.


Assuntos
Nitrogênio , Triazóis , Anaerobiose , Filogenia , Biotransformação
9.
Environ Res ; 220: 115124, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563982

RESUMO

Biogeochemical processes govern the transport and availability of arsenic in sediments. However, little is known about the transition from indigenous communities to cultivable consortia when exposed to high arsenic concentrations. Such cultivable communities could be exploited for arsenic bioremediation of waste streams and polluted sites. Thus, it is crucial to understand the dynamics and selective pressures that shape the communities during the development of customized bacterial consortia. First, from the arsenic partitioning of two sediments with high arsenic concentrations, we found that up to 55% of arsenic was bioavailable because it was associated with the soluble, carbonate, and ionically exchangeable fractions. Next, we prepared sediment enrichment cultures under arsenate- and sulfate-reducing conditions to precipitate arsenic sulfide biominerals and analyze the communities. The produced biominerals were used as the inoculum to develop bacterial consortia via successive transfers. Tracking of the 16S rRNA gene in the fresh sediments, sediment enrichments, biogenic minerals, and bacterial consortia revealed differences in the bacterial communities. Removing the sediment caused a substantial decrease in diversity and shifts toward the dominance of the Firmicutes phylum to the detriment of Proteobacteria. In agreement with the 16S rRNA gene results, the sequencing of the arrA gene confirmed the presence of phylotypes closely related to Desulfosporosinus sp. Y5 (100% similarity), highlighting the pivotal role of this genus in the removal of soluble arsenic. Here, we demonstrated for the first time that besides being important as arsenic sinks, the biogenic arsenic sulfide minerals are reservoirs of arsenic resistant/respiring bacteria and can be used to culture them.


Assuntos
Arsênio , Poluentes Químicos da Água , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise , Bactérias/genética , Sulfetos , Sedimentos Geológicos
10.
Arab J Sci Eng ; 48(6): 7411-7424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36466582

RESUMO

The biosynthesis of the iron oxide nanoparticles was done using Ixoro coccinea leaf extract, followed by the fabrication of iron oxide nanobiocomposites (I-Fe3O4-NBC) using chitosan biopolymer. Furthermore, the synthesized I-Fe3O4-NPs and I-Fe3O4-NBC were characterized, and I-Fe3O4-NBC was applied to remove toxic metals (TMs: Cd, Ni, and Pb) from water. The characterization study confirmed that the nanostructure, porous, rough, crystalline structure, and different functional groups of chitosan and I-Fe3O4-NPs in I-Fe3O4-NBCs showed their feasibility for the application as excellent adsorbents for quantitative removal of TMs. The batch mode strategy as feasibility testing was done to optimize different adsorption parameters (pH, concentrations of TMs, dose of I-Fe3O4-NBC, contact time, and temperature) for maximum removal of TMs from water by Fe3O4-NBC. The maximum adsorption capacities using nanocomposites for Cd, Ni, and Pb were 66.0, 60.0, and 66.4 mg g-1, respectively. The adsorption process follows the Freundlich isotherm model by I-Fe3O4-NBC to remove Cd and Ni, while the Pb may be adsorption followed by multilayer surface coverage. The proposed adsorption process was best fitted to follow pseudo-second-order kinetics and showed an exothermic, favorable, and spontaneous nature. In addition, the I-Fe3O4-NBC was applied to adsorption TMs from surface water (%recovery > 95%). Thus, it can be concluded that the proposed nanocomposite is most efficient in removing TMs from drinking water up to recommended permissible limit.

11.
J Chem Educ ; 100(6): 2269-2280, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38221949

RESUMO

Video games and immersive, narrative experiences are often called upon to help students understand difficult scientific concepts, such as sense of scale. However, the development of educational video games requires expertise and, frequently, a sizable budget. Here, we report on the use of an interactive text-style video game, NanoAdventure, to communicate about sense of scale and nanotechnology to the public. NanoAdventure was developed on an open-source, free-to-use platform with simple coding and enhanced with free or low-cost assets. NanoAdventure was launched in three languages (English, Spanish, Chinese) and compared to textbook-style and blog-style control texts in a randomized study. Participants answered questions on their knowledge of nanotechnology and their attitudes toward nanotechnology before and after reading one randomly assigned text (textbook, blog, or NanoAdventure game). Our results demonstrate that interactive fiction is effective in communicating about sense of scale and nanotechnology as well as the relevance of nanotechnology to a general public. NanoAdventure was found to be the most "fun" and easy to read of all text styles by participants in a randomized trial. Here, we make the case for interactive "Choose Your Own Adventure" style games as another effective tool among educational game models for chemistry and science communication.

12.
J Neurosurg Case Lessons ; 4(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471576

RESUMO

BACKGROUND: Spinal hematomas are a rare entity with broad etiologies, which stem from idiopathic, tumor-related, and vascular malformation etiologies. Less common causes include traumatic blunt nonpenetrating spinal hematomas with very few cases being reported. In the present manuscript presents a case report and review of the literature of a rare traumatic entity of a cervical subarachnoid hematoma in association with Brown-Séquard syndrome in a patient on anticoagulants. Searches were performed on PubMed and Embase for specific terms related. OBSERVATIONS: A well-documented case of an 83-year-old female taking anticoagulants with traumatic cervical subarachnoid hematoma presenting as Brown-Séquard syndrome was reported. Six similar cases were identified, scrutinized, and analyzed in the literature review. LESSONS: Traumatic blunt nonpenetrating cervical spine subarachnoid hematomas are a rare entity that can happen more specifically in anticoagulant users and in patients with arthritic changes and stenosis of the spinal canal. Rapid neurological deterioration and severe disability warrant early aggressive surgical treatment. This report has the intention to record this case in the medical literature for registry purposes.

13.
World Neurosurg ; 166: 192-197, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961589

RESUMO

BACKGROUND: Multidisciplinary spine conferences (MSCs) are a strategy for discussing diagnostic and treatment aspects of patient care. Although they are becoming more common in hospitals, literature investigating how they impact patient care and outcomes is scarce. The aim of this study is to examine the impact of MSCs on surgical management and outcomes in elective spine surgical care. METHODS: A systematic review of the literature was conducted to evaluate the impact of MSCs on patient management and outcomes. PubMed and Cochrane databases were searched using combinations and variations of search terms "Spine Conferences," "Multidisciplinary," and "Spine Team." RESULTS: The literature search yielded 435 articles, of which 120 were selected for full-text review. Four articles (N = 529 patients) were included. Surgical plans were discussed in 211 patients. The decision was altered to conservative treatment in 70 patients (33.17%) and a different surgical strategy in 34 patients (16.11%). The differences were significant in 2 studies (P < 0.05). A 51% reduction in 30-day complications rates was observed when MSC was implemented in patients with adult complex scoliosis. Other spinal disorders showed a 30-day complication rate between 0% and 14% after MSC. CONCLUSIONS: To our knowledge, this is the first systematic review of outcomes of MSCs in elective spine surgery and it confirms that MSCs impact management plan and outcomes. Consistent MSCs that include surgeons and nonsurgeons have the potential to enhance communication between specialists, standardize treatments, improve patient care, and encourage teamwork. More analysis is warranted to determine if patient outcomes are improved with these measures.


Assuntos
Escoliose , Cirurgiões , Adulto , Hospitais , Humanos , Escoliose/cirurgia , Coluna Vertebral/cirurgia
14.
Surg Neurol Int ; 13: 255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855142

RESUMO

Background: Dropped head syndrome (DHS) is uncommon and involves severe weakness of neck-extensor muscles resulting in a progressive reducible cervical kyphosis. The first-line management consists of medical treatment targeted at diagnosing underlying pathologies. However, the surgical management of DHS has not been well studied. Methods: Here, we systematically reviewed the PubMed and Cochrane databases for DHS using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. All relevant articles up to March 31, 2022, were analyzed. The patient had to be ≥18 years with DHS and had to have undergone surgery with outcomes data available. Outcomes measurements included neurological status, rate of failure (RF), horizontal gaze, and complications. Results: A total of 22 articles selected for this study identified 54 patients who averaged 68.9 years of age. Cervical arthrodesis without thoracic extension was performed in seven patients with a RF of 71%. Cervicothoracic arthrodesis was performed in 46 patients with an RF of 13%. The most chosen upper level of fusion was C2 in 63% of cases, and the occiput was included only in 13% of patients. All patients neurologically stabilized or improved, while 75% of undergoing anterior procedures exhibited postoperative dysphagia and/or airway-related complications. Conclusion: The early surgery for patients with DHS who demonstrate neurological compromise or progressive deformity is safe and effective and leads to excellent outcomes.

15.
Environ Pollut ; 309: 119788, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35843454

RESUMO

Nitroguanidine (NQ) is an emerging contaminant being used by the military as a constituent of new insensitive munitions. NQ is also used in rocket propellants, smokeless pyrotechnics, and vehicle restraint systems. Its uncontrolled transformation in the environment can generate toxic and potentially mutagenic products, posing hazards that need to be remediated. NQ transformation has only been investigated to a limited extent. Thus, it is crucial to expand the narrow spectrum of NQ remediation strategies and understand its transformation pathways and end products. Iron-based reactive minerals should be investigated for NQ treatment because they are successfully used in existing technologies, such as permeable reactive barriers, for treating a wide range of organic pollutants. This study tested the ability of micron-sized zero-valent iron (m-ZVI), mackinawite, and commercial FeS, to transform NQ under anoxic conditions. NQ transformation followed pseudo-first-order kinetics. The reaction rate constants decreased as follows: commercial FeS > mackinawite > m-ZVI. For the assessed minerals, the NQ transformation started with the reduction of the nitro group forming nitrosoguanidine (NsoQ). Then, aminoguanidine (AQ) was accumulated during the reaction of NQ with m-ZVI, accounting for 86% of the nitrogen mass recovery. When NQ was reacted with commercial FeS, 45% and 20% of nitrogen were recovered as AQ and guanidine, respectively, after 24 h. Nonetheless, NsoQ persisted, contributing to the N-balance. When mackinawite was present, NsoQ disappeared, but AQ was not detected, and guanidine accounted for 11% of the nitrogen recovery. AQ was ultimately transformed into cyanamide, whose dimerization triggered the formation of cyanoguanidine. Alternatively, NsoQ was transformed into guanidine, which reacted with cyanamide to form biguanide. This is the first report systematically investigating the NQ transformation by different iron-based reactive minerals. The evidence indicates that these minerals are attractive alternatives for developing NQ remediation strategies.


Assuntos
Ferro , Poluentes Químicos da Água , Cianamida , Guanidinas , Minerais , Nitrogênio
16.
Biotechnol Bioeng ; 119(9): 2437-2446, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35706349

RESUMO

Insensitive munitions compounds (IMCs), such as 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO), are replacing conventional explosives in munitions formulations. Manufacture and use of IMCs generate waste streams in manufacturing plants and load/assemble/pack facilities. There is a lack of practical experience in executing biodegradation strategies to treat IMCs waste streams. This study establishes a proof-of-concept that bacterial consortia can be designed to mineralize IMCs and co-occurring nitroaromatics in waste streams. First, DNAN, 4-nitroanisole (4-NA), and 4-chloronitrobenzene (4-CNB) in a synthetic DNAN-manufacturing waste stream were biodegraded using an aerobic fluidized-bed reactor (FBR) inoculated with Nocardioides sp. JS 1661 (DNAN degrader), Rhodococcus sp. JS 3073 (4-NA degrader), and Comamonadaceae sp. LW1 (4-CNB degrader). No biodegradation was detected when the FBR was operated under anoxic conditions. Second, DNAN and NTO were biodegraded in a synthetic load/assemble/pack waste stream during a sequential treatment comprising: (i) aerobic DNAN biodegradation in the FBR; (ii) anaerobic NTO biotransformation to 3-amino-1,2,4-triazol-5-one (ATO) by an NTO-respiring enrichment; and (iii) aerobic ATO mineralization by an ATO-oxidizing enrichment. Complete biodegradation relied on switching redox conditions. The results provide the basis for designing consortia to treat mixtures of IMCs and related waste products by incorporating microbes with the required catabolic capabilities.


Assuntos
Substâncias Explosivas , Nitrocompostos , Anisóis/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biotransformação , Substâncias Explosivas/metabolismo , Nitrocompostos/metabolismo , Triazóis/metabolismo
17.
Environ Sci Technol ; 56(13): 9387-9397, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35704431

RESUMO

Insensitive munitions compounds (IMCs) are emerging nitroaromatic contaminants developed by the military as safer-to-handle alternatives to conventional explosives. Biotransformation of nitroaromatics via microbial respiration has only been reported for a limited number of substrates. Important soil microorganisms can respire natural organic matter (NOM) by reducing its quinone moieties to hydroquinones. Thus, we investigated the NOM respiration combined with the abiotic reduction of nitroaromatics by the hydroquinones formed. First, we established nitroaromatic concentration ranges that were nontoxic to the quinone respiration. Then, an enrichment culture dominated by Geobacter anodireducens could indirectly reduce a broad array of nitroaromatics by first respiring NOM components or the NOM surrogate anthraquinone-2,6-disulfonate (AQDS). Without quinones, no nitroaromatic tested was reduced except for the IMC 3-nitro-1,2,4-triazol-5-one (NTO). Thus, the quinone respiration expanded the spectrum of nitroaromatics susceptible to transformation. The system functioned with very low quinone concentrations because NOM was recycled by the nitroaromatic reduction. A metatranscriptomic analysis demonstrated that the microorganisms obtained energy from quinone or NTO reduction since respiratory genes were upregulated when AQDS or NTO was the electron acceptor. The results indicated microbial NOM respiration sustained by the nitroaromatic-dependent cycling of quinones. This process can be applied as a nitroaromatic remediation strategy, provided that a quinone pool is available for microorganisms.


Assuntos
Hidroquinonas , Microbiologia do Solo , Benzoquinonas , Oxirredução , Quinonas , Respiração
18.
Artigo em Inglês | MEDLINE | ID: mdl-35162506

RESUMO

Biological treatment using sulfate-reducing bacteria (SRB) is a promising approach to remediate acid rock drainage (ARD). Our purpose was to assess the performance of a sequential system consisting of a limestone bed filter followed by a sulfate-reducing bioreactor treating synthetic ARD for 375 days and to evaluate changes in microbial composition. The treatment system was effective in increasing the pH of the ARD from 2.7 to 7.5 and removed total Cu(II) and Zn(II) concentrations by up to 99.8% and 99.9%, respectively. The presence of sulfate in ARD promoted sulfidogenesis and changed the diversity and structure of the microbial communities. Methansarcina spp. was the most abundant amplicon sequence variant (ASV); however, methane production was not detected. Biodiversity indexes decreased over time with the bioreactor operation, whereas SRB abundance remained stable. Desulfobacteraceae, Desulfocurvus, Desulfobulbaceae and Desulfovibrio became more abundant, while Desulfuromonadales, Desulfotomaculum and Desulfobacca decreased. Geobacter and Syntrophobacter were enriched with bioreactor operation time. At the beginning, ASVs with relative abundance <2% represented 65% of the microbial community and 21% at the end of the study period. Thus, the results show that the microbial community gradually lost diversity while the treatment system was highly efficient in remediating ARD.


Assuntos
Microbiota , Sulfatos , Reatores Biológicos/microbiologia , Carbonato de Cálcio , Cobre , Sulfatos/química , Zinco
19.
Global Spine J ; 12(8): 1934-1942, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35220801

RESUMO

STUDY DESIGN: Systematic Review and Meta-Analysis. OBJECTIVES: The elderly have an increased risk of perioperative complications for Adult Spinal Deformity (ASD) corrections. Stratification of these perioperative complications based on risk type and specific risk factors, however, remain unclear. This paper will systematically review perioperative risk factors in the elderly undergoing ASD correction stratified by type: medical, implant-related, proximal junctional kyphosis (PJK), and need for revision surgery. METHODS: A systematic review was performed using the PRISMA guidelines. A query of PubMed was performed to identify publications pertinent to ASD in the elderly. Publications included in this review focused on patients ≥65 years old who underwent operative management for ASD to assess for risk factors of perioperative complications. RESULTS: A total of 734 unique citations were screened resulting in ten included articles for this review. Pooled incidence of perioperative complications included medical complications (21%), implant-related complications (16%), PJK (29%), and revision surgery (13%). Meta-analysis calculated greater preoperative PT (WMD 2.66; 95% Cl .36-4.96; P = .02), greater preoperative SVA (WMD 2.24; 95% Cl .62-3.86; P = .01), and greater postoperative SVA (WMD .97; 95% Cl .03-1.90; P = .04) to significantly correlate with development of PJK with no evidence of publication bias or concerns in study heterogeneity. CONCLUSIONS: There is a paucity of literature describing perioperative complications in the elderly following ASD surgery. Appropriate understanding of modifiable risk factors for the development of medical and implant-related complications, proximal junctional kyphosis, and revision surgeries presents an opportunity to decrease morbidity and improve patient outcomes.

20.
Environ Sci Pollut Res Int ; 29(17): 25988-25994, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218486

RESUMO

Aryl-iodonium salts are utilized as photoacid generators (PAGs) in semiconductor photolithography and other photo-initiated manufacturing processes. Despite their utilization and suspected toxicity, the fate of these compounds within the perimeter of semiconductor fabrication plants is inadequately understood; the identification of photolithography products is still needed for a comprehensive environmental impact assessment. This study investigated the photolytic transformation of a representative iodonium PAG cation, bis-(4-tert-butyl phenyl)-iodonium, under conditions simulating industrial photolithography. Under 254-nm irradiation, bis-(4-tert-butyl phenyl)-iodonium reacted rapidly with a photolytic half-life of 39.2 s; different counter ions or solvents did not impact the degradation kinetics. At a semiconductor photolithography-relevant UV dosage of 25 mJ cm-2, 33% of bis-(4-tert-butyl phenyl)-iodonium was estimated to be transformed. Six aromatic/hydrophobic photoproducts were identified utilizing a combination of HPLC-DAD and GC-MS. Selected photoproducts such as tert-butyl benzene and tert-butyl iodobenzene had remarkably higher acute microbial toxicity toward bacterium Aliivibrio fischeri compared to bis-(4-tert-butyl phenyl)-iodonium. Octanol-water partition coefficients estimated using the Estimation Programs Interface Suite™ indicated that the photoproducts were substantially more hydrophobic than the parent compound. The results fill a critical data gap hindering the environmental impact assessment of iodonium PAGs and provide clues on potential management strategies for both iodonium compounds and their photoproducts.


Assuntos
Aliivibrio fischeri , Cátions , Interações Hidrofóbicas e Hidrofílicas , Octanóis , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...